变频器在日常使用中会遇到一些意外的干扰,这样的干扰会导致变频器的损坏,这些意外事件包括电压的瞬间变化,和浪涌意外,所以目前要做的就是对意外事件的保护措施。
因为在生活电压的瞬变和浪涌无处不在,电网、雷击、爆破,就连人在地毯上行走都会产生上万伏的静电感应电压,这些,都是变频器控制端口和通信端口的隐形危害源。因此,为了提高变频器的可靠性就必须对电压瞬变和浪涌采取防护措施。
变频器的防雷端口有哪些
根据变频器应用的工程实践,变频器受雷击可大致分为直击雷、感应雷和传导雷。但不论以哪一种形式到达设备都可归纳为从以下4个部位侵入的雷电浪涌,在此把这些部位称为防雷端口,并以变频器举例说明。
1.外壳端口
比如说,我们可以把任何一个大的或小的变频器或系统视为一个整体的外壳,如传感器、传输线、信号中继、现场仪表、dcs系统等,它们都有可能完全暴露在环境中受到直接雷击,造成设备损坏。标准规定,当设备外壳受到4kv的雷电静电放电时,都会影响变频器或系统的正常运行。例如放置于室外输入变频器的传感器有可能受到雷电接触放电;位于室内的变频器柜有可能受到建筑物避雷引线泄流时的空间放电。
2.信号线端口
在变频器控制系统中,为了实现信号或信息的传递总要有与外界连接的部位,那么这些从外界输入信号或变频器输出的信号接口都有可能受到雷电浪涌冲击。因为变频器柜外部信号输入变频器端口的浪涌往往通过长电缆,所以采用10/700μs波形,标准规定线到线间浪涌电压为0.5kv,线到地间浪涌电压为1kv。而楼内变频器之间传递信号的端口受到浪涌冲击相当于电源线上的浪涌冲击,采用1.2/50(8/20)μs组合波,线到线、线到地浪涌电压限值不变。一旦超过限值,信号端口和端口后的设备有可能遭受损坏。
3.电源端口
电源端口是分布最广泛也最容易感应或传导雷电浪涌的部位,变频器的电源端口为从配电屏到变频器电源输入端和从变频器输出端到电动机。标准规定在1.2/50(8/20)μs 波形下线与线之间浪涌电压限值为0.5kv,线到地浪涌电压限制为1kv。但这里的浪涌电压是指明工作电压为220v交流进入的,如果工作电压较低则不能以此为标准,电源线上受较小的浪涌冲击不一定立即损坏设备,但至少对寿命有影响。
4.接地端口
尽管在标准中没有专门提到接地端口的指标,实际上变频器的接地端口是非常重要的。在雷电发生时接地端口有可能受到地电位反击、地电位升高影响,或者由于接地不良、接地不当使地阻过大,达不到参考电位要求使设备损坏。接地端口不仅对接地电阻/接地线极(长度、直径、材料等)、接地方式、地网的设置等有要求,而且还与设备的电特性、工作频段、工作环境等有直接的关系。同时从接地端还有可能反击到变频器内的直流工作电源端口,损坏以直流为工作电压的单元电路。综上所述,变频器的防雷可以考虑从四个关键的端口入手。
变频器端口的保护措施有哪些
1.外壳端口
变频器的外壳端口保护不仅仅是建筑物外壳,也应当包括变频器外壳或变频器柜的外壳,比如说变频器、变频器柜室等。按照iec 1312—1《雷电电磁脉冲的防护》第一部分(一般原则)的适用范围为:建筑物内或建筑物顶部变频器系统有效的雷电防护系统的设计、安装、检查、维护。其保护方法主要有三种:接地、屏蔽及等电位连接。
(1) 接地
iec1024—1已经阐述了建筑物防雷接地的方法,主要是通过建筑物地下网状接地系统达到要求。变频器系统防雷时还要求对相邻两建筑物之间通过的电力线,信号传输电缆均必须与建筑物接地系统连接起来(不能形成回路),以利用多条并行路径来减少电缆中的电流。
变频器系统的接地更应当注意系统的安全性和防止其它系统干扰。一般来说工作状态下变频器系统接地不能直接和防雷地线相连,否则将有杂散电流进入变频器系统引起信号干扰。正确的连接方式应当在地下将两个不同地网,通过放电器低压避雷器连接,使其在雷击状态下自动连通。
(2) 屏蔽
从理论上考虑,屏蔽对变频器外壳防雷是非常有效的。但从经济合理角度来看,还是应当从设备元器件抗扰度及对屏蔽效能的要求来选择不同的屏蔽方法。线路屏蔽,即在变频器系统中采用屏蔽电缆已被广泛应用。但对于设备或系统的屏蔽需要视具体情况而定。iec提出了采用建筑物钢筋连到金属框架的措施举例。
iec1312—2作了如下描述:建筑物内部变频器系统的主要电磁干扰源是由一次闪击时的几个雷击的瞬时电流造成的瞬态磁场。如果包含变频器系统的建筑物或房间,用大空间屏蔽,通常在这样的措施下瞬时电场被减少到一个足够低的值。
(3) 等电位接连
等电位连接的目的是减小变频器之间和变频器与金属部件之间的电位差。在防雷区的界面处的等电位连接