3 环境空气中小颗粒物的研究状况
1988年,王玮等[4]对广州、郑州、云岗3地大气环境中PM2.5 浓度、离子浓度、酸度和酸化缓冲能力进行了分析;张晶[8]等对北京市大气中PM2.0的来源进行了分析,董金泉等[9]等对华北清洁地区空气中PM2.0的来源进行了研究,发现城区与清洁区存在很大差异,城区PM2.0主要来源为汽车尾气(59.7%),清洁区主要为土壤尘(67.1%),虽然不同的解析源的方法存在着较大的差异,但对宏观环境的分析有一定的意义和参考价值。李祚泳等[2]对大气颗粒物(PM10)源解析常用的化学质量平衡法(CMB)、因子分析法(KA)、目标变换因子法(TTFA)、目标识别因子法(TTRA)及投影寻踪回归新技术(PPR)进行了比较,指出每种方法的局限性或不足。
魏复盛等[1,3,5,6]对广州、重庆、武汉和兰州4个城市大气中PM10 和PM2.5的组成、颗粒物的污染水平及与人体健康关系等进行了较为系统的研究,通过聚类分析指出城市大气颗粒物中元素的来源,指出高富集于颗粒物上的金属和非金属元素(Cu、Zn、Pb、S、Cl、Se、As、Br)。文献[5,6]将PM10 、PM2.5污染监测与健康调查相结合,提出了空气中PM10 、PM2.5与儿童呼吸系统患病发生率呈线性相关,其影响比二氧化硫和氮氧化物更密切。空气污染严重组对儿童呼吸系统疾病的发生率是污染较轻组的1.71~3.95倍。呼吸系统疾病受颗粒物影响大的另一原因应与颗粒物对多种有害物质的吸附有关。朱利中等[10]对城市居民区空气中多环芳烃污染物气态和固态分布做出了分析。即使在气温高达35℃时,具有强致癌作用的 B[a]P(25ng/m3)在颗粒物上仍占87.0%,被怀疑有致癌性的苯并[k]荧蒽(40ng/m3)在颗粒物上也占87.5%,致癌的四环芳烃苯并[a]蒽在颗粒物上的比例为35%。五环芳烃在PM10 上吸附的量占在总悬浮颗粒物总量的85%以上。若空气中颗粒物B[a]P浓度为22ng/m3,苯并[k]荧蒽浓度为36ng/m3, 它们在PM2.5上吸附的量约占总量的50%以上;PM2.5约有50%由鼻腔分离[11],按每人每天吸入空气10m3计,通过细颗粒物吸入身体未被鼻腔分离的B[a]P为55ng,苯并[k]荧蒽为90ng。
在我国南北方城市中,细颗粒物及多环芳烃的污染比较严重,超标现象时有发生。有关居住区多环芳烃污染与人体健康水平(特别是癌症)的关系,不同代表性区域细颗粒物吸附有机物性能,细颗粒物浓度与人体健康的定量关系等尚需系统研究。
4 环境空气中不同粒径颗粒物相关性分析
环境空气中TSP、PM10 和PM2.5之间存在相互联系,在不同的条件下,PM10、PM2.5在TSP中所占的比例也有所不同。在上海某居民区,PM10≈0.85TSP, 1996年德国,PM10≈0.83TSP,1995年和1996年的兰州,PM10≈0.25TSP。一般讲, 空气质量较好时, 空气中小颗粒物所占比例高,其中汽车尾气贡献率较高。
唐山市环境空气中总悬浮颗粒物与PM10 的相关性见图2。线性方程为:y=0.5048x+0.0254, 相关系数 r=0.8646,n=20,若显著性水平α=0.001, r0.001=0.6787,r>>r0.001, TSP与PM10线性关系非常显著。
根据文献[1]的数据, 建立PM2.5与PM10间的线性方程见图3。线性方程为:y=0.5385x+0.0102, 相关系数r=0.9569,n=16,若显著性水平α=0.001, r0.001=0.7420, r>>r0.001, PM2.5与PM10线性关系非常显著。
从1995、1996年4个城市监测结果看,我国城市环境大气中PM2.5污染较为严重,平均浓度为0.109mg/m3, PM2.5与PM10之比较低为0.59。1996年,德国法兰克福PM2.5浓度为0.028mg/m3,与PM10之比为0.70,由此可见空气中颗粒物浓度越低,PM2.5所占比例越高。
5 结论
近20年来,我国城市环境空气中颗粒物污染变化显著。颗粒物浓度大幅度减小,小颗粒物所占比例增大。南方与北方城市、东部与西部城市环境空气中颗粒物浓度差别较大,但这种差距呈缩小趋势。