另一方面,企业要想满足环境标准的要求,除了发展EV之外,普及利用燃料电池替代发动机的FCV也是一个方向。FCV也需要配备充电电池。根据充电电池性能的不同,燃料电池需要的输出功率也大不相同。
在此背景下,全球的充电电池开发竞争日趋激烈。开发的主线是为锂离子充电电池探索新的可用材料(图2)。现行EV锂离子充电电池一个单元的能量密度为60~140Wh/kg。小型EV充电1次只能行驶160公里左右。因此,EV首先需要将电池单元的能量密度提高到250Wh/kg左右,使1次充电的行驶距离达到约300公里。
图2:纯电动汽车的普及必须依靠电池性能的飞跃
EV和PHEV使用的锂离子充电电池的能量密度将力争在2020年达到250Wh/kg,在2030年达到500Wh/kg,实现全面普及。
为了提高容量,硅(Si)类负极材料即将在车载领域投入实用。在理论上,硅能够实现的容量,约是当前使用的石墨材料的10倍。但硅在充放电时的膨胀和收缩过大,寿命方面存在难点。
作为改善膨胀和收缩问题,同时提高容量的材料,一氧化硅(SiO)等硅类氧化物成为了关注的焦点。例如,大阪钛业科技推出了具备非晶构造的一氧化硅。该公司制造的一氧化硅的负极容量为1700~1800mAh/g,大约是石墨的5倍。
积水化学工业也证实,通过利用自主开发的硅类氧化物,能够实现340Wh/kg左右的能量密度。其特点是使用离子导电度与电解液相当的凝胶电解质,无需注入电解液,只需一道涂布工序即可完成整个单元的制造。
积水化学工业将从2014年夏季开始供应样品,在2015年首先面向消费类用途实现商品化。而车载用途需要材料认证、适用审查等繁琐的步骤,商品化最早也要等到2018年前后。